The still mysterious roles of cysteine-containing glutathione transferases in plants

نویسندگان

  • Pierre-Alexandre Lallement
  • Bastiaan Brouwer
  • Olivier Keech
  • Arnaud Hecker
  • Nicolas Rouhier
چکیده

Glutathione transferases (GSTs) represent a widespread multigenic enzyme family able to modify a broad range of molecules. These notably include secondary metabolites and exogenous substrates often referred to as xenobiotics, usually for their detoxification, subsequent transport or export. To achieve this, these enzymes can bind non-substrate ligands (ligandin function) and/or catalyze the conjugation of glutathione onto the targeted molecules, the latter activity being exhibited by GSTs having a serine or a tyrosine as catalytic residues. Besides, other GST members possess a catalytic cysteine residue, a substitution that radically changes enzyme properties. Instead of promoting GSH-conjugation reactions, cysteine-containing GSTs (Cys-GSTs) are able to perform deglutathionylation reactions similarly to glutaredoxins but the targets are usually different since glutaredoxin substrates are mostly oxidized proteins and Cys-GST substrates are metabolites. The Cys-GSTs are found in most organisms and form several classes. While Beta and Omega GSTs and chloride intracellular channel proteins (CLICs) are not found in plants, these organisms possess microsomal ProstaGlandin E-Synthase type 2, glutathionyl hydroquinone reductases, Lambda, Iota and Hemerythrin GSTs and dehydroascorbate reductases (DHARs); the four last classes being restricted to the green lineage. In plants, whereas the role of DHARs is clearly associated to the reduction of dehydroascorbate to ascorbate, the physiological roles of other Cys-GSTs remain largely unknown. In this context, a genomic and phylogenetic analysis of Cys-GSTs in photosynthetic organisms provides an updated classification that is discussed in the light of the recent literature about the functional and structural properties of Cys-GSTs. Considering the antioxidant potencies of phenolic compounds and more generally of secondary metabolites, the connection of GSTs with secondary metabolism may be interesting from a pharmacological perspective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutathione S- transferases and their function as a protein superfamily in plants

Glutathione s transferase (GST) is one of the largest protein and multigene families present in all plant species and other living organisms. For these proteins, which are highly ‌inducible to stress and internal and external stimuli, several functions in plants have been identified, including implication in secondary metabolism, growth and development, detoxification of herbicides, coping with...

متن کامل

Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana.

Searches with the human Omega glutathione transferase (GST) identified two outlying groups of the GST superfamily in Arabidopsis thaliana which differed from all other plant GSTs by containing a cysteine in place of a serine at the active site. One group consisted of four genes, three of which encoded active glutathione-dependent dehydroascorbate reductases (DHARs). Two DHARs were predicted to ...

متن کامل

The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels.

A functional analysis of the role of glutathione in protecting plants from environmental stress was undertaken by studying Arabidopsis that had been genetically modified to have altered glutathione levels. The steady-state glutathione concentration in Arabidopsis plants was modified by expressing the cDNA for gamma-glutamyl-cysteine synthetase (GSH1) in both the sense and antisense orientation....

متن کامل

Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases.

The Saccharomyces cerevisiae genome encodes three proteins that display similarities with human GSTOs (Omega class glutathione S-transferases) hGSTO1-1 and hGSTO2-2. The three yeast proteins have been named Gto1, Gto2 and Gto3, and their purified recombinant forms are active as thiol transferases (glutaredoxins) against HED (beta-hydroxyethyl disulphide), as dehydroascorbate reductases and as d...

متن کامل

Structure of a tau class glutathione S-transferase from wheat active in herbicide detoxification.

Glutathione S-transferases (GSTs) from the phi (GSTF) and tau (GSTU) classes are unique to plants and play important roles in stress tolerance and secondary metabolism as well as catalyzing the detoxification of herbicides in crops and weeds. We have cloned and functionally characterized a group of GSTUs from wheat treated with fenchlorazole-ethyl, a herbicide safener. One of these enzymes, TaG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014